
The Livespace Bus
Part 3 – Network Enabling DataBeans

Networking DataBeans

Or: how we turn DataBeans into distributed
entities

Network-Enabling
Databeans

• An Entity is a DataBean with three
guaranteed properties

• A globally-unique ID string

• A name – an ID that makes sense to
humans (not necessarily unique)

• A type e.g. “clipboard”, “computer”, etc

Containers – Server
• To publish an entity, put it in a server

container

• A server

• Supplies entities to clients in response to
queries

• Monitors changes to its entities and emits
deltas for clients to receive

• Processes requests from clients to change
the entity

Containers – Client

• Clients

• Query for remote entities and maintain a
local replica

• Monitor local changes to the replica and
emit requests to server to update

• Monitor changes to the replicated entities
sent by servers and update their replicas

Transparency

• Users of shared DataBeans/Entities do not
need to be aware they’re distributed

• Everything is asynchronous

• Optimistic lock/update, no blocking

Under The Hood

Entity synchronisation is done by
broadcasting messages over the Elvin event
bus

Entity Synchronisation
Message busClient Server 1 Server 2

Find "type = computer"

Entity 1 copy

Entity 2 copy

Entity 1 changed: user = "fred"

Update request: command = "dir"

Entity 2 changed: command = "dir"

Entity 2 deleted

Discovery

Change Entity 1
On Server

Change Entity
2 On Client

Server 2
Shutdown

Concurrency Issues

• Containers have a shared thread that
executes updates

• When changing a shared entity

• The developer must synchronise with the
update thread

• Or run the risk of race conditions with
the update thread

Elvin
• The Elvin message bus is used to

synchronise entities

• Elvin supports broadcasting messages
between producers and consumers

• Many uses: Livespaces, Sticker, AuTM, ...

• Usually invisible to Livespace developers

• You may can choose to use Elvin
messaging directly if the Livespace entity
model is not appropriate

Elvin

• Elvin is a publish/subscribe message bus

• Messages are name-value pairs:

Name: “Fred”
Age: 20
Favourite number: 3.14159

Elvin Subscriptions

• Clients select messages using subscription
expressions

Name: “Fred”
Age: 20
Favourite number: 3.14159

Name != “Frodo” && Age < 30

matches

Elvin In A Livespace

Livespace-Protocol: 1000
Room: "Intense Collaboration Space"
Entity-Type: "clipboard"
Entity-Id: "Intense Collaboration Space.clipboard"
Livespace: "info"
To: "*"
Action: "init"
\$Name: "Default"
\$Text: "Some text"

Announcing the clipboard entity

Elvin In A Livespace

Livespace-Protocol: 1000
Room: "Intense Collaboration Space"
Entity-Type: "clipboard"
Entity-Id: "Intense Collaboration Space.clipboard"
Request-Id: "4f730dc:110a3cada56:f7fc4"
From: "4f730dc:110a3cada56:f7fc4"
Livespace: "update"
\$Text: "Hello!"

Requesting a change to the clipboard entity

Avis

• Elvin has a long history

• Started at DSTC in 1992

• Commercialised by Mantara in 2003

• Will be withdrawn from sale end 2007

• Avis is an open source implementation of
the Elvin service

• Livespaces switching to Avis by end 2007

End Of Part 3

Exercise – The Sound
Player

